skip to main content


Search for: All records

Creators/Authors contains: "Leykin, Anton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 24, 2024
  2. Free, publicly-accessible full text available June 29, 2024
  3. Abstract—We present a method for solving two minimal problems for relative camera pose estimation from three views, which are based on three view correspondences of (i) three points and one line and the novel case of (ii) three points and two lines through two of the points. These problems are too difficult to be efficiently solved by the state of the art Gro ̈bner basis methods. Our method is based on a new efficient homotopy continuation (HC) solver framework MINUS, which dramatically speeds up previous HC solving by specializing HC methods to generic cases of our problems. We characterize their number of solutions and show with simulated experiments that our solvers are numerically robust and stable under image noise, a key contribution given the borderline intractable degree of nonlinearity of trinocular constraints. We show in real experiments that (i) SIFT feature location and orientation provide good enough point-and-line correspondences for three-view reconstruction and (ii) that we can solve difficult cases with too few or too noisy tentative matches, where the state of the art structure from motion initialization fails. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    A numerical description of an algebraic subvariety of projective space is given by a general linear section, called a witness set. For a subvariety of a product of projective spaces (a multiprojective variety), the corresponding numerical description is given by a witness collection, whose structure is more involved. We build on recent work to develop a toolkit for the numerical manipulation of multiprojective varieties that operates on witness collections and to use this toolkit in an algorithm for numerical irreducible decomposition of multiprojective varieties. The toolkit and decomposition algorithm are illustrated throughout in a series of examples. 
    more » « less